Paper 1, Section I, 9B

Cosmology
Part II, 2021

The continuity, Euler and Poisson equations governing how non-relativistic fluids with energy density ρ\rho, pressure PP and velocity v\mathbf{v} propagate in an expanding universe take the form

ρt+3Hρ+1a(ρv)=0ρa(t+va)u=1c2PρΦ2Φ=4πGc2ρa2\begin{gathered} \frac{\partial \rho}{\partial t}+3 H \rho+\frac{1}{a} \boldsymbol{\nabla} \cdot(\rho \mathbf{v})=0 \\ \rho a\left(\frac{\partial}{\partial t}+\frac{\mathbf{v}}{a} \cdot \nabla\right) \mathbf{u}=-\frac{1}{c^{2}} \nabla P-\rho \boldsymbol{\nabla} \Phi \\ \nabla^{2} \Phi=\frac{4 \pi G}{c^{2}} \rho a^{2} \end{gathered}

where u=v+aHx,H=a˙/a\mathbf{u}=\mathbf{v}+a H \mathbf{x}, H=\dot{a} / a and a(t)a(t) is the scale factor.

(a) Show that, for a homogeneous and isotropic flow with P=Pˉ(t),ρ=ρˉ(t),v=0P=\bar{P}(t), \rho=\bar{\rho}(t), \mathbf{v}=\mathbf{0} and Φ=Φˉ(t,x)\Phi=\bar{\Phi}(t, \mathbf{x}), consistency of the Euler equation with the Poisson equation implies Raychaudhuri's equation.

(b) Explain why this derivation of Raychaudhuri's equation is an improvement over the derivation of the Friedmann equation using only Newtonian gravity.

(c) Consider small perturbations about a homogeneous and isotropic flow,

ρ=ρˉ(t)+ϵδρ,v=ϵδv,P=Pˉ(t)+ϵδP and Φ=Φˉ(t,x)+ϵδΦ,\rho=\bar{\rho}(t)+\epsilon \delta \rho, \quad \mathbf{v}=\epsilon \delta \mathbf{v}, \quad P=\bar{P}(t)+\epsilon \delta P \quad \text { and } \quad \Phi=\bar{\Phi}(t, \mathbf{x})+\epsilon \delta \Phi,

with ϵ1\epsilon \ll 1. Show that, to first order in ϵ\epsilon, the continuity equation can be written as

t(δρρˉ)=1aδv\frac{\partial}{\partial t}\left(\frac{\delta \rho}{\bar{\rho}}\right)=-\frac{1}{a} \boldsymbol{\nabla} \cdot \delta \mathbf{v}