Paper 3, Section II, B

Cosmology
Part II, 2021

(a) Consider a closed universe endowed with cosmological constant Λ>0\Lambda>0 and filled with radiation with pressure PP and energy density ρ\rho. Using the equation of state P=13ρP=\frac{1}{3} \rho and the continuity equation

ρ˙+3a˙a(ρ+P)=0,\dot{\rho}+\frac{3 \dot{a}}{a}(\rho+P)=0,

determine how ρ\rho depends on aa. Give the physical interpretation of the scaling of ρ\rho with

(b) For such a universe the Friedmann equation reads

(a˙a)2=8πG3c2ρc2R2a2+Λ3\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3 c^{2}} \rho-\frac{c^{2}}{R^{2} a^{2}}+\frac{\Lambda}{3}

What is the physical meaning of R?R ?

(c) Making the substitution a(t)=αa~(t)a(t)=\alpha \tilde{a}(t), determine α\alpha and Γ>0\Gamma>0 such that the Friedmann equation takes the form

(a~˙a~)2=Γa~41a~2+Λ3.\left(\frac{\dot{\tilde{a}}}{\tilde{a}}\right)^{2}=\frac{\Gamma}{\tilde{a}^{4}}-\frac{1}{\tilde{a}^{2}}+\frac{\Lambda}{3} .

Using the substitution y(t)=a~(t)2y(t)=\tilde{a}(t)^{2} and the boundary condition y(0)=0y(0)=0, deduce the boundary condition for y˙(0)\dot{y}(0).

Show that

y¨=4Λ3y2\ddot{y}=\frac{4 \Lambda}{3} y-2

and hence that

a~2(t)=32Λ[1cosh(4Λ3t)+λsinh(4Λ3t)]\tilde{a}^{2}(t)=\frac{3}{2 \Lambda}\left[1-\cosh \left(\sqrt{\frac{4 \Lambda}{3}} t\right)+\lambda \sinh \left(\sqrt{\frac{4 \Lambda}{3}} t\right)\right]

Express the constant λ\lambda in terms of Λ\Lambda and Γ\Gamma.

Sketch the graphs of a~(t)\tilde{a}(t) for the cases λ>1,λ<1\lambda>1, \lambda<1 and λ=1\lambda=1.