Paper 1, Section II, 26F

Differential Geometry
Part II, 2021

(a) Let SR3S \subset \mathbb{R}^{3} be a surface. Give a parametrisation-free definition of the first fundamental form of SS. Use this definition to derive a description of it in terms of the partial derivatives of a local parametrisation ϕ:UR2S\phi: U \subset \mathbb{R}^{2} \rightarrow S.

(b) Let aa be a positive constant. Show that the half-cone

Σ={(x,y,z)z2=a(x2+y2),z>0}\Sigma=\left\{(x, y, z) \mid z^{2}=a\left(x^{2}+y^{2}\right), z>0\right\}

is locally isometric to the Euclidean plane. [Hint: Use polar coordinates on the plane.]

(c) Define the second fundamental form and the Gaussian curvature of SS. State Gauss' Theorema Egregium. Consider the set

V={(x,y,z)x2+y2+z22xy2yz=0}\{(0,0,0)}R3V=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}-2 x y-2 y z=0\right\} \backslash\{(0,0,0)\} \subset \mathbb{R}^{3}

(i) Show that VV is a surface.

(ii) Calculate the Gaussian curvature of VV at each point. [Hint: Complete the square.]