Paper 1, Section II, A

Dynamical Systems
Part II, 2021

(a) State the properties defining a Lyapunov function for a dynamical system x˙=f(x)\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}). State Lyapunov's first theorem and La Salle's invariance principle.

(b) Consider the system

x˙=yy˙=2x(1x2)(1+x2)3ky\begin{aligned} &\dot{x}=y \\ &\dot{y}=-\frac{2 x\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{3}}-k y \end{aligned}

Show that for k>0k>0 the origin is asymptotically stable, stating clearly any arguments that you use.

[ Hint: ddxx2(1+x2)2=2x(1x2)(1+x2)3]\left[\text { Hint: } \frac{d}{d x} \frac{x^{2}}{\left(1+x^{2}\right)^{2}}=\frac{2 x\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{3}} \cdot\right]

(c) Sketch the phase plane, (i) for k=0k=0 and (ii) for 0<k10<k \ll 1, giving brief details of any reasoning and identifying the fixed points. Include the domain of stability of the origin in your sketch for case (ii).

(d) For k>0k>0 show that the trajectory x(t)\mathbf{x}(t) with x(0)=(1,y0)\mathbf{x}(0)=\left(1, y_{0}\right), where y0>0y_{0}>0, satisfies 0<y(t)<y02+120<y(t)<\sqrt{y_{0}^{2}+\frac{1}{2}} for t>0t>0. Show also that, for any ϵ>0\epsilon>0, the trajectory cannot remain outside the region 0<y<ϵ0<y<\epsilon.