Paper 3, Section II, 20F

Algebraic Topology
Part II, 2021

Let XX be a space. We define the cone of XX to be

CX:=(X×I)/C X:=(X \times I) / \sim

where (x1,t1)(x2,t2)\left(x_{1}, t_{1}\right) \sim\left(x_{2}, t_{2}\right) if and only if either t1=t2=1t_{1}=t_{2}=1 or (x1,t1)=(x2,t2)\left(x_{1}, t_{1}\right)=\left(x_{2}, t_{2}\right).

(a) Show that if XX is triangulable, so is CXC X. Calculate Hi(CX)H_{i}(C X). [You may use any results proved in the course.]

(b) Let KK be a simplicial complex and LKL \subseteq K a subcomplex. Let X=K,A=LX=|K|, A=|L|, and let XX^{\prime} be the space obtained by identifying LK|L| \subseteq|K| with L×{0}CL|L| \times\{0\} \subseteq C|L|. Show that there is a long exact sequence

Hi+1(X)Hi(A)Hi(X)Hi(X)Hi1(A)H1(X)H0(A)ZH0(X)H0(X)0\begin{aligned} \cdots \rightarrow & H_{i+1}\left(X^{\prime}\right) \rightarrow H_{i}(A) \rightarrow H_{i}(X) \rightarrow H_{i}\left(X^{\prime}\right) \rightarrow H_{i-1}(A) \rightarrow \cdots \\ & \cdots \rightarrow H_{1}\left(X^{\prime}\right) \rightarrow H_{0}(A) \rightarrow \mathbb{Z} \oplus H_{0}(X) \rightarrow H_{0}\left(X^{\prime}\right) \rightarrow 0 \end{aligned}

(c) In part (b), suppose that X=S1×S1X=S^{1} \times S^{1} and A=S1×{x}XA=S^{1} \times\{x\} \subseteq X for some xS1x \in S^{1}. Calculate Hi(X)H_{i}\left(X^{\prime}\right) for all ii.