Paper 2, Section II, 13E

Further Complex Methods
Part II, 2021

The temperature T(x,t)T(x, t) in a semi-infinite bar (0x<)(0 \leqslant x<\infty) satisfies the heat equation

Tt=κ2Tx2, for x>0 and t>0\frac{\partial T}{\partial t}=\kappa \frac{\partial^{2} T}{\partial x^{2}}, \quad \text { for } x>0 \text { and } t>0

where κ\kappa is a positive constant.

For t<0t<0, the bar is at zero temperature. For t0t \geqslant 0, the temperature is subject to the boundary conditions

T(0,t)=a(1ebt),T(0, t)=a\left(1-e^{-b t}\right),

where aa and bb are positive constants, and T(x,t)0T(x, t) \rightarrow 0 as xx \rightarrow \infty.

(a) Show that the Laplace transform of T(x,t)T(x, t) with respect to tt takes the form

T^(x,p)=f^(p)exp/κ\hat{T}(x, p)=\hat{f}(p) e^{-x \sqrt{p / \kappa}}

and find f^(p)\hat{f}(p). Hence write T^(x,p)\hat{T}(x, p) in terms of a,b,κ,pa, b, \kappa, p and xx.

(b) By performing the inverse Laplace transform using contour integration, show that for t0t \geqslant 0

T(x,t)=a[1ebtcos(bκx)]+2abπP0ev2tsin(xv/κ)v(v2b)dvT(x, t)=a\left[1-e^{-b t} \cos \left(\sqrt{\frac{b}{\kappa}} x\right)\right]+\frac{2 a b}{\pi} \mathcal{P} \int_{0}^{\infty} \frac{e^{-v^{2} t} \sin (x v / \sqrt{\kappa})}{v\left(v^{2}-b\right)} d v