Paper 2, Section II, 18I
Part II, 2021
(a) Let be a polynomial of degree , and let be its splitting field.
(i) Suppose that is irreducible. Compute , carefully stating any theorems you use.
(ii) Now suppose that factors as in , with each irreducible, and if . Compute , carefully stating any theorems you use.
(iii) Explain why is a cyclotomic extension. Define the corresponding homomorphism for this extension (for a suitable integer ), and compute its image.
(b) Compute for the polynomial . [You may assume that is irreducible and that its discriminant is .]