Paper 3, Section II, 18I

Galois Theory
Part II, 2021

Define the elementary symmetric functions in the variables x1,,xnx_{1}, \ldots, x_{n}. State the fundamental theorem of symmetric functions.

Let f(x)=xn+an1xn1++a0K[x]f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in K[x], where KK is a field. Define the discriminant of ff, and explain why it is a polynomial in a0,,an1a_{0}, \ldots, a_{n-1}.

Compute the discriminant of x5+qx^{5}+q.

Let f(x)=x5+px2+qf(x)=x^{5}+p x^{2}+q. When does the discriminant of f(x)f(x) equal zero? Compute the discriminant of f(x)f(x).