(a) Explain briefly how the linear operators L=−∂x2+u(x,t) and A=4∂x3−3u∂x− 3∂xu can be used to give a Lax-pair formulation of the KdV equation ut+uxxx−6uux=0.
(b) Give a brief definition of the scattering data
Su(t)={{R(k,t)}k∈R,{−κn(t)2,cn(t)}n=1N}
attached to a smooth solution u=u(x,t) of the KdV equation at time t. [You may assume u(x,t) to be rapidly decreasing in x.] State the time dependence of κn(t) and cn(t), and derive the time dependence of R(k,t) from the Lax-pair formulation.
(c) Show that
F(x,t)=n=1∑Ncn(t)2e−κn(t)x+2π1∫−∞∞R(k,t)eikxdk
satisfies ∂tF+8∂x3F=0. Now let K(x,y,t) be the solution of the equation
K(x,y,t)+F(x+y,t)+∫x∞K(x,z,t)F(z+y,t)dz=0
and let u(x,t)=−2∂xϕ(x,t), where ϕ(x,t)=K(x,x,t). Defining G(x,y,t) by G= (∂x2−∂y2−u(x,t))K(x,y,t), show that
G(x,y,t)+∫x∞G(x,z,t)F(z+y,t)dz=0
(d) Given that K(x,y,t) obeys the equations
(∂x2−∂y2)K−uK(∂t+4∂x3+4∂y3)K−3(∂xu)K−6u∂xK=0=0
where u=u(x,t), deduce that
∂tK+(∂x+∂y)3K−3u(∂x+∂y)K=0
and hence that u solves the KdV equation.