Paper 3, Section II, 32D

Integrable Systems
Part II, 2021

(a) Consider the group of transformations of R2\mathbb{R}^{2} given by g1s:(t,x)(t~,x~)=g_{1}^{s}:(t, x) \mapsto(\tilde{t}, \tilde{x})= (t,x+st)(t, x+s t), where sRs \in \mathbb{R}. Show that this acts as a group of Lie symmetries for the equation d2x/dt2=0d^{2} x / d t^{2}=0.

(b) Let (ψ1,ψ2)R2\left(\psi_{1}, \psi_{2}\right) \in \mathbb{R}^{2} and define ψ=ψ1+iψ2\psi=\psi_{1}+i \psi_{2}. Show that the vector field ψ1ψ2ψ2ψ1\psi_{1} \partial_{\psi_{2}}-\psi_{2} \partial_{\psi_{1}} generates the group of phase rotations g2s:ψeisψg_{2}^{s}: \psi \rightarrow e^{i s} \psi.

(c) Show that the transformations of R2×C\mathbb{R}^{2} \times \mathbb{C} defined by

gs:(t,x,ψ)(t~,x~,ψ~)=(t,x+st,ψeisx+is2t/2)g^{s}:(t, x, \psi) \mapsto(\tilde{t}, \tilde{x}, \tilde{\psi})=\left(t, x+s t, \psi e^{i s x+i s^{2} t / 2}\right)

form a one-parameter group generated by the vector field

V=tx+x(ψ1ψ2ψ2ψ1)=tx+ix(ψψψψ)V=t \partial_{x}+x\left(\psi_{1} \partial_{\psi_{2}}-\psi_{2} \partial_{\psi_{1}}\right)=t \partial_{x}+i x\left(\psi \partial_{\psi}-\psi^{*} \partial_{\psi^{*}}\right)

and find the second prolongation Pr(2)gs\operatorname{Pr}^{(2)} g^{s} of the action of {gs}\left\{g^{s}\right\}. Hence find the coefficients η0\eta^{0} and η11\eta^{11} in the second prolongation of VV,

pr(2)V=tx+(ixψψ+η0ψt+η1ψx+η00ψtt+η01ψxt+η11ψxx+\mathrm{pr}^{(2)} V=t \partial_{x}+\left(i x \psi \partial_{\psi}+\eta^{0} \partial_{\psi_{t}}+\eta^{1} \partial_{\psi_{x}}+\eta^{00} \partial_{\psi_{t t}}+\eta^{01} \partial_{\psi_{x t}}+\eta^{11} \partial_{\psi_{x x}}+\right. complex conjugate )).

(d) Show that the group {gs}\left\{g^{s}\right\} of transformations in part (c) acts as a group of Lie symmetries for the nonlinear Schrödinger equation itψ+12x2ψ+ψ2ψ=0i \partial_{t} \psi+\frac{1}{2} \partial_{x}^{2} \psi+|\psi|^{2} \psi=0. Given that aeia2t/2sech(ax)a e^{i a^{2} t / 2} \operatorname{sech}(a x) solves the nonlinear Schrödinger equation for any aRa \in \mathbb{R}, find a solution which describes a solitary wave travelling at arbitrary speed sRs \in \mathbb{R}.