Paper 4, Section II, H

Linear Analysis
Part II, 2021

(a) Let (H1,,1),(H2,,2)\left(H_{1},\langle\cdot, \cdot\rangle_{1}\right),\left(H_{2},\langle\cdot, \cdot\rangle_{2}\right) be two Hilbert spaces, and T:H1H2T: H_{1} \rightarrow H_{2} be a bounded linear operator. Show that there exists a unique bounded linear operator T:H2H1T^{*}: H_{2} \rightarrow H_{1} such that

Tx1,x22=x1,Tx21,x1H1,x2H2\left\langle T x_{1}, x_{2}\right\rangle_{2}=\left\langle x_{1}, T^{*} x_{2}\right\rangle_{1}, \quad \forall x_{1} \in H_{1}, x_{2} \in H_{2}

(b) Let HH be a separable Hilbert space. We say that a sequence (ei)\left(e_{i}\right) is a frame of HH if there exists A,B>0A, B>0 such that

xH,Ax2i1x,ei2Bx2\forall x \in H, \quad A\|x\|^{2} \leqslant \sum_{i \geqslant 1}\left|\left\langle x, e_{i}\right\rangle\right|^{2} \leqslant B\|x\|^{2}

State briefly why such a frame exists. From now on, let (ei)\left(e_{i}\right) be a frame of HH. Show that Span{ei}\operatorname{Span}\left\{e_{i}\right\} is dense in HH.

(c) Show that the linear map U:H2U: H \rightarrow \ell^{2} given by U(x)=(x,ei)i1U(x)=\left(\left\langle x, e_{i}\right\rangle\right)_{i \geqslant 1} is bounded and compute its adjoint UU^{*}.

(d) Assume now that (ei)\left(e_{i}\right) is a Hilbertian (orthonormal) basis of HH and let aHa \in H. Show that the Hilbert cube Ca={xH\mathcal{C}_{a}=\left\{x \in H\right. such that i1,x,eia,ei}\left.\forall i \geqslant 1,\left|\left\langle x, e_{i}\right\rangle\right| \leqslant\left|\left\langle a, e_{i}\right\rangle\right|\right\} is a compact subset of HH.