Paper 2, Section II, H

Analysis of Functions
Part II, 2021

Define the Schwartz space, S(Rn)\mathscr{S}\left(\mathbb{R}^{n}\right), and the space of tempered distributions, S(Rn)\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right), stating what it means for a sequence to converge in each space.

For a CkC^{k} function f:RnCf: \mathbb{R}^{n} \rightarrow \mathbb{C}, and non-negative integers N,kN, k, we say fXN,kf \in X_{N, k} if

fN,k:=supxRn;αk(1+x2)N2Dαf(x)<\|f\|_{N, k}:=\sup _{x \in \mathbb{R}^{n} ;|\alpha| \leqslant k}\left|\left(1+|x|^{2}\right)^{\frac{N}{2}} D^{\alpha} f(x)\right|<\infty

You may assume that XN,kX_{N, k} equipped with N,k\|\cdot\|_{N, k} is a Banach space in which S(Rn)\mathscr{S}\left(\mathbb{R}^{n}\right) is dense.

(a) Show that if uS(Rn)u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right) there exist N,kZ0N, k \in \mathbb{Z}_{\geqslant 0} and C>0C>0 such that

u[ϕ]CϕN,k for all ϕS(Rn)|u[\phi]| \leqslant C\|\phi\|_{N, k} \text { for all } \phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)

Deduce that there exists a unique u~XN,k\tilde{u} \in X_{N, k}^{\prime} such that u~[ϕ]=u[ϕ]\tilde{u}[\phi]=u[\phi] for all ϕS(Rn)\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right).

(b) Recall that vS(Rn)v \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right) is positive if v[ϕ]0v[\phi] \geqslant 0 for all ϕS(Rn)\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right) satisfying ϕ0\phi \geqslant 0. Show that if vS(Rn)v \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right) is positive, then there exist MZ0M \in \mathbb{Z}_{\geqslant 0} and K>0K>0 such that

v[ϕ]KϕM,0, for all ϕS(Rn)|v[\phi]| \leqslant K\|\phi\|_{M, 0}, \quad \text { for all } \phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)

[\left[\right. Hint: Note that ϕ(x)ϕM,0(1+x2)M2]\left.|\phi(x)| \leqslant\|\phi\|_{M, 0}\left(1+|x|^{2}\right)^{-\frac{M}{2}} \cdot\right]